Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 19(1): 44, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472539

RESUMO

Thanks to high performance above room temperature, antimonide laser diodes have shown great potential for broad application in the mid-infrared spectral region. However, the laser`s performance noticeably deteriorates due to the reduction of carrier confinement with increased emission wavelength. In this paper, a novel active region with higher carrier confinements both of electron and hole, by the usage of an indirect bandgap material of Al0.5GaAs0.04Sb as the quantum barrier, was put up to address the poor carrier confinement of GaSb-based type-I multi-quantum-well (MQW) diode lasers emission wavelength above 2.5 µm. The carrier confinement and the differential gain in the designed active region are enhanced as a result of the first proposed usage of an indirect-gap semiconductor as the quantum barrier with larger band offsets in conduction and valence bands, leading to high internal quantum efficiency and low threshold current density of our lasers. More importantly, the watt-level output optical power is obtained at a low injection current compared to the state of the art. Our work demonstrates a direct and cost-effective solution to address the poor carrier confinement of the GaSb-based MQW lasers, thereby achieving high-power mid-infrared lasers.

2.
Opt Express ; 31(21): 34011-34020, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859166

RESUMO

In this paper, we put up a robust design of a stable single-mode-operated GaSb-based laser diode emitting around 1950nm. This novel design structure with socketed ridge-waveguide enables a simple fabrication and batch production of mid-infrared laser diodes on account of the mere usage of standard photolithography. By introducing micron-level index perturbations distributed along the ridge waveguide, the threshold gains of different FP modes are modulated. Four geometrical parameters of the perturbations are systematically optimized by analyzing the reflection spectrum to get a robust single-mode characteristic. Based on the optimized geometrical parameters, 1-mm long uncoated lasers are carried out and exhibit a stable single longitudinal mode from 10 °C to 40 °C with a maximum output power of more than 10 mW. Thus, we prove the feasibility of the standard photolithography to manufacture the monolithic single-mode infrared laser source without regrowth process or nanoscale lithography.

3.
Nanoscale Res Lett ; 17(1): 116, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477446

RESUMO

GaSb-based single-transverse-mode narrow ridge waveguide (RW) lasers with high power and simultaneous good beam quality have broad application prospects in the mid-infrared wavelength region. Yet its design and formation have not been investigated systematically, while the beam characteristics that affect their suitability for specific applications remain rarely analyzed and optimized. The present work addresses these issues by theoretically establishing a waveguide parameter domain that generalizes the overall possible combinations of ridge widths and etch depths that support single-transverse-mode operation for GaSb-based RW lasers. These results are applied to develop two distinct and representative waveguide designs derived from two proposed major optimization routes of model gain expansion and index-guiding enhancement. The designs were evaluated experimentally based on prototype 1-mm cavity-length RW lasers in the 1950 nm wavelength range, which were fabricated with waveguides having perpendicular ridge and smooth side-walls realized through optimized dry etching conditions. The model gain expanded RW laser design with a relatively shallow-etched (i.e., 1.55 [Formula: see text]m) and wide ridge (i.e., 7 [Formula: see text]m) yielded the highest single-transverse-mode power to date of 258 mW with a narrow lateral divergence angle of 11.1[Formula: see text] full width at half maximum at 800 mA under room-temperature continuous-wave operation, which offers promising prospects in pumping and coupling applications. Meanwhile, the index-guiding enhanced RW laser design with a relatively deeply etched (i.e., 2.05 [Formula: see text]m) and narrow ridge (i.e., 4 [Formula: see text]m) provided a highly stable and nearly astigmatism-free fundamental mode emission with an excellent beam quality of M[Formula: see text] factor around 1.5 over the entire operating current range, which is preferable for seeding external cavity applications and complex optical systems.

4.
Opt Express ; 29(21): 33864-33873, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809189

RESUMO

In this article, we present a tunable GaSb-based blazed grating external cavity laser (BG-ECL) with high spectral purity and high output power single-mode operation around 1940nm. The drastic increase in spectral selectivity and optical power results from the employment of a single-transverse-mode operating narrow ridge waveguide laser diode with an optimized AR coating on the front facet. The stable fundamental spatial mode output beam from the laser diode enables efficient collimation and high coupling efficiency with the blazed grating, leading to stronger wavelength-selective feedback. The AR coating with proper low reflectivity on the straight waveguide effectively suppresses the internal cavity mode lasing without causing extra optical loss. As a result, the BG-ECL device exhibits excellent comprehensive performance with a side mode suppression ratio (SMSR) over 50 dB with optical power exceeding 30 mW within a 70 nm tuning range. A maximum SMSR of 56.26 dB with 35.12 mW output power was observed in continuous-wave operation. By increasing the working temperature of the diode laser, the tuning range can be further extended to over 100 nm without noticeable degradation in spectral and output power performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...